If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=80
We move all terms to the left:
c^2-(80)=0
a = 1; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·1·(-80)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*1}=\frac{0-8\sqrt{5}}{2} =-\frac{8\sqrt{5}}{2} =-4\sqrt{5} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*1}=\frac{0+8\sqrt{5}}{2} =\frac{8\sqrt{5}}{2} =4\sqrt{5} $
| ½(8g-20)=2(g-1)-3 | | 6y+9=4y+3 | | x/6-9=21 | | 7(4x–9)=343 | | 4)7(4x–9)=343 | | N×(n-1)/2=45 | | 11(5x–8)=121 | | 115x–8=121 | | 7(4x-9)=343 | | 0,1x=3 | | 7,7+6x+9x2=0 | | y=99.9 | | x/4-11=25 | | 4x−8=2(3−5x) | | 1.6=y/15. | | 5x–8=-33 | | 2x^2+5x-900=0 | | 1/40=12/x | | 2x²+27x+95=0 | | 4x+14=+6x+20 | | 3+y=-0.5 | | 6a+3/a=5 | | 2+y=-0.5 | | 1+y=-0.5 | | 0+y=-0.5 | | -1+y=-0.5 | | 121÷x=11 | | 0=3-2y-1 | | 0=2-2y-1 | | F(X)=2x/9x+21 | | 0=1-2y-1 | | 0=0-2y-1 |